
Certificate-based Authorization Policy in a PKI 
Environment 
MARY R. THOMPSON, ABDELILAH ESSIARI  
AND SRILEKHA MUDUMBAI 
LAWRENCE BERKELEY NATIONAL LABORATORY 
________________________________________________________________________ 
 
The major emphasis of Public Key Infrastructure has been to provide a cryptographically secure means of 
authenticating identities. However, procedures for authorizing the holders of these identities to perform specific 
actions still need additional research and development. While there are a number of proposed standards for 
authorization structures and protocols such as KeyNote, SPKI and SAML based on X.509 or other key-based 
identities, none have been widely adopted. As part of an effort to use X.509 identities to provide authorization 
in highly distributed environments, we have developed and deployed an authorization service based on X.509 
identified users and access policy contained in certificates signed by X.509 identified stakeholders. The major 
goal of this system, called Akenti, is to produce a usable authorization system for an environment consisting of 
distributed resources used by geographically and administratively distributed users. Akenti assumes 
communication between users and resources over a secure protocol such as Transport Layer Security (TLS) to 
provide mutual authentication with X.509 certificates. This paper explains the authorization model and policy 
language used by Akenti, and how we have implemented an Apache authorization module to provide Akenti 
authorization. 
 
Categories and Subject Descriptors:  D.2.11 [Software Engineering], Software Architectures, Policy languages, 
D.4.6 [Operating Systems], Security and Protection 
General Terms: Security, Languages 
Additional Key Words and Phrases: Public Key Infrastructure, Digital Certificates, XML 
 
 

1. INTRODUCTION 

There is a significant and growing set of distributed computing environments where the 

resources, resource stakeholders and users are geographically and organizationally 

distributed. The DOE-sponsored Collaboratories [Agarwal, et al. 1998] and various 

“Computational Grids” [Foster and Kesselman 1999] are examples of these, as well as 

the ubiquitous Web-controlled sets of documents and services. These systems effectively  

_______________________________________________________________________ 
This work is supported by the U. S. Department of Energy, Office of Science, Office of Advanced Scientific 
Computing Research, Mathematical, Information and Computation Sciences office (http:// 
www.er.doe.gov/production/octr/mics), under contract DE-AC03-76SF00098 with the University of 
California. See the disclaimer at http://www-library.lbl.gov/teid/tmRco/howto/RcoBerkeleyLabDisclaimer.htm 
This document is report LBNL-51616 
Author Present Addresses: M. Thompson, A. Essiari, S. Mudumbai, Lawrence Berkeley National Laboratory 
MS50B-2239 1 Cyclotron Rd. Berkeley, CA 94720 mrthompson@lbl.gov, aessiari@lbl.gov, 
srilek@yahoo.com 
An earlier version of this paper was previously published as ”Authorization Policy in a 
PKI Environment” M.Thompson, S.Mudumbai, A.Essiari, W Chin Proceedings of the 1st 
Annual NIST workshop on PKI, Apr 2002. 
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee 
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, 
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM, 
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific 
permission and/or a fee. 
© 2001 ACM 1073-0516/01/0300-0034 $5.00 



define a virtual organization whose members and resources span many different real 

organizations. These virtual organizations need a way to authenticate and then authorize 

their users.  

One of the characteristics of a collaboratory or Grid is that both the stakeholders and 

users may come from many different administrative domains. Thus, the virtual 

organization needs to identify its users in a domain neutral manner. The traditional 

candidates for cross-domain identities are Kerberos [Kohl, et al. 1993] and PKI 

[Arsenault, et al. 2002]. Kerberos is mostly used within a single administrative domain, 

although there are many examples of cross-authenticated Kerberos realms, where the 

Kerberos administrators have agreed to accept tokens from another realm. Negotiating 

cross-realm agreements is often a lengthy and complex process. Some examples of such 

domains are universities, where there may be multiple Kerberos realms within the 

university, and the DOE’s ASCI-DisCom2 program [DISCOM] that connects Lawrence 

Livermore National Laboratory, Los Alamos National Laboratory and Sandia National 

Laboratories in a computational Grid. 

Looser collaborations, such as Grids based on Globus® [Foster, et al. 2001] 

middleware, [IPG, PPDG] and collaboratories [Pancerella, et al. 1999, NFC]  have 

chosen to use PKI identities to authenticate members. These organizations either run a 

Certification Authority (CA) of their own and/or accept certificates from a set of trusted 

CAs. Establishing trusted CA relationships can also be a lengthy process, but to the 

extent that the trust is by an individual resource provider rather than the whole site, and 

that many current collaboratories and Grids are experimental in nature, the trust relations 

have been established on an informal basis by the researchers, rather than the system 

security administrators. Once a collaboration has decided to use PKI identities to 

authenticate users, it needs to develop an authorization system using those identities plus 

some additional access policy information for all of its resources. 

Another characteristic of collaboratories and Grids is that their resources, such as 

large scientific instruments, computing resources and data stores, may have more than 

one person (called a stakeholder) who needs to control access to the resource. For 

example, when remote control of an instrument is allowed, the instrument administrators 

may want assurance that any user who can control the instrument has passed a local 

training course, while the principal investigator may be mostly concerned that the person 

controlling the instrument during his allowed time is a member of his research group. An 

authorization system that allows access policy to be defined independently and remotely 

from the resource gateway is desirable. 



Standard access control methods typically use a central repository located at the 

resource site for authorization policy. While this centralization of policy on a secure host 

ensures that it can be trusted, it usually requires the stakeholder to have privileged access 

to the resource site in order to set the policy. Also such systems, to the extent that they 

use the underlying operating system for actual access control, require that all users of a 

shared resource must have a local account on the system. The requirement for individual 

system accounts on the resource machine does not scale well. 

We have developed the Akenti [Thompson, et al. 1999] authorization system to meet 

these two needs: to use a virtual organization-wide user identity (in our case an X.509 

public key certificate); and to facilitate setting access policy by multiple independent 

stakeholders remote from the actual resource gateway. The goal of the Akenti project is 

to provide a practical, easy to use, authorization service that meets the needs of 

collaboratories and computational Grids.  

The rest of this paper is organized as follows. Section 2 explains the authorization 

model and policy language that we use and compares this to some of the other early work 

in authorization. Section 3 describes how we have implemented an Apache authorization 

module to provide the same authorization policy and mechanism for resources accessed 

via a Web browser as accessed by other remote methods such as Globus job submission 

[Foster, et al. 2001]. Section 4 presents some performance measurements of our current 

implementation and section 5 compares Akenti to some newer distributed authority 

systems and standards.  

 

2. AKENTI 

Akenti assumes that X.509 certificates [Housley, et al. 2001] and the SSL/TLS [Dierks 

and Allen 1999] connection protocols have been used to securely authenticate a user that 

is requesting access to a resource. It represents the authorization policy for a resource as a 

set of (possibly) distributed certificates digitally signed by unrelated stakeholders from 

different domains. These policy certificates are independently created by authorized 

stakeholders. When an authorization decision needs to be made, the Akenti policy engine 

gathers up all the relevant certificates for the user and the resource, verifies them, and 

determines the users rights with respect to the resource. 

 

2.1 Authorization model 

The Akenti model consists of resources that are being accessed via a resource gateway 

(the Policy Enforcement Point - PEP) by users. These users connect to the resource 



gateway using the SSL handshake protocol to present authenticated X.509 certificates. 

The stakeholders for the resources express access constraints on the resources as a set of 

signed certificates, a few of which are self-signed and must be stored on a known secure 

host (probably the resource gateway machine), but most of which can be stored remotely. 

These certificates express the attributes a user must have in order to get specific rights to 

a resource, who is trusted to create use-condition statements and who can attest to a user’s 

attributes. At the time of the resource access, the resource gatekeeper (PEP) asks a trusted 

Akenti server (the Policy Decision Point - PDP), what access the user has to the resource. 

The Akenti server finds all the relevant certificates, verifies that each one is signed by an 

acceptable issuer, evaluates them, and returns the allowed access. See Figure 1. 

 

Akenti 
Resource
Gatew ay User 

Resources 

1 2 

4 

5 

6 

3 

7 

Policy
Certificates

 

Figure 1 Akenti Authorization Model 

There are several models for authorization systems. One is the pull model where the 

user presents only his authenticated identity to the gatekeeper who finds (pulls) the policy 

information for the resource and evaluates the user’s access. A classic example of this is 

local file system access where the user id of the process that is attempting to reference the 

file is compared to the access control list of the file. The other general model is the push 

model, where the user presents one or more tokens or assertions which grant the holder 

specific rights to the resource. In this model, the gatekeeper has to verify that the user has 

the rights to use the tokens and then to interpret the rights that have been presented. The 

original examples of this model were capability-based operating systems where access to 

files and other objects was granted on the basis of unforgeable tokens, called capabilities, 

associated with a process [Levy 1984]. With the growing use of digitally signed 



certificates that can be verified for data integrity and authenticity, the push model is 

gaining wider usage. There are also hybrids of the two models, such as when a user 

presents identity information that includes restrictions on his full set of rights, or presents 

a handle to an authentication/authorization server from which the gatekeeper may pull 

information about the user and his rights. 

We have mostly concentrated on the pull model in order to allow applications to use 

Akenti authorization over standard TLS connections that transport and verify X.509 

certificates. We have also experimented with a push model where Akenti is contacted by 

the user and returns a signed capability certificate containing an authorization assertion 

consisting of a subject’s Distinguished Name (DN), public key, the CA that signed for 

this name, the name of the resource and the subject’s rights. If this is presented by the 

user to a resource gatekeeper, along with an authenticated identity certificate, the 

gatekeeper need only verify Akenti’s signature of the certificate, and verify that the 

subject named in the capability is the same as that in the identity certificate. These 

capability certificates are short-lived in order to avoid the problems of revocation. 

 

2.2 Akenti policy language 

Akenti policy is expressed in XML and stored in three types of signed certificates: 

policy certificates, use-condition certificates and attribute certificates. Policy certificates 

specify the sources of authority for the resource. Use-condition certificates contain the 

constraints that control access to a resource. Attribute certificates assign attributes to 

users that are needed to satisfy the use constraints. 

Policy certificates are self-signed, co-located with the resources to which they apply 

and contain only minimal information since they are centrally located and may be 

administratively difficult to update. They are used to bootstrap and to provide closure for 

the trust chain by specifying the sources of authority for a resource. The sources of 

authority are the CAs who may sign X.509 certificates for all the principals involved in 

an authorization decision and the stakeholders who may issue use-condition certificates 

for the resource. Whenever a certificate is used, the Akenti policy engine will check that 

it has been signed by an acceptable issuer, and that the signature verifies. The CAs are 

represented by their X.509 certificates which provide a trusted copy of their public keys 

and information about where they publish certificates and certificate revocation lists. The 

stakeholders are represented by their Distinguished Names (DN) and the DN of the CA 

that issued a certificate for that name and a list of places, specified by URLs, where the 



stakeholders put the use-condition certificates that they issue. A policy certificate may 

optionally contain a list of URLs in which to search for attribute certificates. 

Resources controlled by Akenti authorization may be grouped into a resource realm. 

A resource realm can be organized as a flat structure of resources such as instruments or 

compute platforms, or a hierarchical structure such as a file system or set of Web 

documents. Each resource realm has at least one policy certificate which must be stored 

in a known and secure place. Normally it is on the same machine that controls access to 

the resource, but it could also be on the platform where the Akenti server is running, if 

they are different. In the case of hierarchical resources, there must be at least one policy 

certificate at the top of the tree  (referred to as the root policy). In addition, there may be 

a policy certificate at any level where there are new stakeholders, or restrictions on the 

allowed CAs. Levels without their own policy certificates inherit policy from higher 

levels.  

Each stakeholder group for a resource must create at least one and possibly more 

use-condition certificates for the resource. A use-condition certificate consists of a 

constraint, which is a relational expression of the attributes a user must have to get a 

certain set of rights and a list of the principals who can attest to the required attributes. 

Components of the X.509 distinguished name can be used as attributes such as CN=Mary 

R. Thompson, or O=Diesel Combustion Collaboratory, or attributes can be defined in the 

context of the resource. For example, role = researcher or group = accounting. These 

attribute requirements can be combined with the Boolean operators && or ||. Negative 

permissions such a group != accounting are not supported because of the difficulty in 

requiring all the relevant attribute certificates  to be found. It is also possible to specify 

real-time or system attributes such as time<=5PM && time>=9AM, or system_load < 2. 

If Akenti is unable to evaluate such system attributes it may return them to the resource 

gateway for evaluation. An attribute authority (consisting of an issuer and its CA) is 

specified as the signing authority for each attribute-value pair. See Figure 2 for an 

example of a use-condition certificate. 

A stakeholder may put use-condition certificates in more than one place for 

reliability, but each directory must contain the complete set. Since use-conditions restrict 

access to a resource, it is essential that either all or none of them be found. If no use-

conditions are found for a stakeholder group, all access to the resource is denied. This is 

not the case with attribute certificates since they only serve to increase access. Thus a 

missing attribute certificate may limit or deny a user’s access, but will never allow an 

access that should be denied. 



 

<?xml version=“1.0” encoding=“US-ASCII”?> 

<AkentiCertificate xmlns:ak=“http://www-itg.lbl.gov/akenti/docs/AkentiCertificate” > 

  <SignablePart>     

    <Header Type=“UseCondition” SignatureDigestAlg=“RSA-MD5” CanonAlg=“Ak1CanAlg” 

Version=“2”> 

      <UID>“host.lbl.gov#104b8965#Mon May 07 17:04:23 PDT 2001”</UID> 

      <Issuer> 

          <UserDN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Mary R.

Thompson </UserDN> 

          <CADN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA 

</CADN> 

      </Issuer>   

      <ValidityPeriod Begin=“010508000421Z” End=“040506080443Z”/> 

   </Header>  

  <UseConditionCert scope=“local” critical=“false”>  

    <ResourceName> LBL </ResourceName> 

    <Condition>  

       <Constraint>( o=Lawrence Berkeley National Laboratory | | ( group = distrib ) ) </Constraint> 

       <AttributeInfo type=“X509”> 

   <AttrName> o </AttrName> 

   <AttrValue> Lawrence Berkeley National Laboratory </AttrValue> 

   <CADN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA 

</CADN> 

       </AttributeInfo> 

       <AttributeInfo type=“AKENTI”> 

   <AttrName> group </AttrName> 

   <AttrValue> distrib </AttrValue> 

   <Principal> 

     <UserDN> /C=US/O=Lawrence Berkeley National

Laboratory/OU=ICSD/CN=Srilekha Issuer </UserDN> 

      <CADN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-

CA </CADN> 

     </Principal> 

       </AttributeInfo> 

    </Condition> 

    <Rights> read, write </Rights> 

   </UseConditionCert> 

  </SignablePart> 

Figure 2 Use-condition Certificate 



 

Attribute certificates contain an attribute-value pair and the principal to whom it 

applies. They are signed by attribute authorities that have been specified in a use-

condition certificate. Attributes can apply to more than one resource, although they are 

likely to be applicable in only a single resource realm. Akenti attribute certificates are 

XML documents rather than the proposed IETF ASN.1 attribute certificates. (See the 

section on Related Work for a more detailed comparison.) The complete XML schema 

for Akenti certificates can be found on the Akenti Web site [AKENTI.XSD 2003]. 

  

2.3 Comparison to earlier authorization policy languages 

A language to describe access policy typically involves making statements about some or 

all of the following elements: requestor identity, grantor identity, a set of access rights, a 

set of constraints [Ryutov, Neuman 2000]. The target resource to which the rights apply 

may be explicit in the policy statement or may be implicit in the context. The identities 

may be expressed as names or as public keys. The access rights are usually arbitrary 

strings whose meaning is agreed on between the policy creator and the PEP. Constraints 

can be expressed as a set of tokens, as a Boolean expression or in a special purpose 

language. The names of the constraints e.g., group, role, time only need to be self-

consistent within the policy, the attribute assertions and the PEP. 

Two basic types of authorization policy statements are: authorization assertions, 

including rights delegation or capabilities, used in push model authorization systems and 

resource-centric access policy statements used in pull models. The paper of Lampson, et 

al. which describes a formal theory for authentication in distributed systems defines a 

“speaks for” relationship that describes the delegation of rights [Lampson, et al. 1992]. 

The paper shows how such delegation of rights can be used to describe many of the 

current access control methods. Neuman’s paper on proxy-based authorization [Neuman 

1993] gives a clear description of various kinds of proxy certificates: full proxies, 

restricted proxies, bearer and delegated proxies. It shows how restricted proxies can be 

used to combine restrictions from access control lists with the ability of a trusted 

principal to delegate its privileges to another principal. The CRISIS security architecture 

[Belani 1998 ] implemented these ideas in transfer certificates in which one principal can 

delegate a subset of its rights to another principal. The transfers are expressed as a list of 

capabilities. There can be a chain of transfer certificates delegating a more limited set of 

capabilities to additional principals.   



Simple Public Key Infrastructure (SPKI) is an IEFT experimental protocol that 

defines, among other things, a simple authorization certificate that can be used to allow 

one principal (or authority) to delegate rights to another principal [Ellison 1999]. An 

authorization certificate binds an authorization to a key and is expressed as a 5-tuple 

consisting of: Issuer, Subject, DelegationAllowed (true or false), Authorization (an S-

expression) and Validity dates. The subject is represented either by its public key, or by a 

name that is bound in a name certificate to a public key. One of the interesting ideas of 

SPKI and other trust management systems, was to focus on the need to authorize a user’s 

actions without first authenticating the user’s name. The certificates being used form a 

chain of delegated rights that eventually chain back to a known authority. 

  The other common style of access policy is to define the access conditions for a 

resource. This often takes the form of an extended or generalized access control list. 

These lists can consist of an ordered set of elements that contain information about what 

users or groups have what access. In the extended ACL used by the IETF’s GAA 

protocol [Ryutov, Neuman 2000] and the Prospero Resource Manager [Ryutov 1999] 

each token consists of a type, a defining authority and a value. Some token types are: 

access identity, a set of positive rights, or the value of a constraint. In the GACL 

specified by Woo and Lam, there is one element for each resource, but it can specify 

rights for groups, individuals and inherited rights from other objects [T. Y. C. Woo, et al. 

1993].  

The emphasis in these early systems was to produce compact information structures 

that were easily machine parseable. The KeyNote system [Blaze, et al. 1999] expanded 

authorization assertions to a keyword/value format to make the certificates more human 

readable. Here the conditions are also written as Boolean expressions. The first version of 

Akenti also used keyword/value pairs and Boolean constraints. We eventually switched 

to XML, as the complexity of the use-conditions required too much information to be 

hidden implicitly in the ordering of the fields, thus defeating our goal of easily 

understood certificates. (See the Related Work section for a more detailed comparison of 

KeyNote and Akenti.) 

In the context of the previous discussion, the Akenti static certificates contain 

resource-centric access policy including trust relationships and attribute assertions. 

Akenti returns its access decision in a dynamic short-lived capability certificate, signed 

by the Akenti server. This certificate can be used as a delegation of rights proxy, where 

the bearer is the user who made the authorization request and the grantor of the rights is 

the Akenti authorization server. XML was the choice for the second implementation after 



the desired policy expressions outgrew the simple ordered keyword/value pairs syntax. 

Using XML makes the certificates more human readable at the expense of compactness. 

Now that XML parsers and standardized methods for extracting information from DOM 

trees are readily available, XML can be as easily, if not as efficiently, machine parsed and 

interpreted. Of course, the amount of code needed to perform this is greater than that 

needed for simpler or more rule oriented languages.  

 

2.4 Creating policy 

Since policy is contained in signed XML certificates, which are interdependent, a 

stakeholder needs some tools to assist in the creation of certificates. A stakeholder starts 

by creating the root policy certificate for the resource realm. The X.509 certificates of all 

the trusted CAs must be available from a trusted source and are placed in the root policy 

certificate. This certificate also contains the URLs of the locations where these CAs 

publish certificates and certificate revocation lists. The first stakeholder must decide if 

there are other stakeholders for the resource and, if so, include their DNs and CAs in the 

root policy certificate. In a hierarchical set of resources, only the top-level stakeholders 

need to be known initially. They in turn, can delegate control to other stakeholders for 

resources lower in the hierarchy.  

Akenti certificates can either be created by a command line tool that signs an XML 

input certificate, or by a GUI program that steps a stakeholder through a menu of choices 

for each field in the certificate. The GUI program is supported by a resource definition 

server running on the resource host which in turn reads a resource definition file and any 

existing policy certificates to find stakeholder names, acceptable attributes and actions for 

a resource realm. The command line method is fine for very simple policy, and for the 

root policy certificate, but as soon as the policy becomes hierarchical, or there are many 

stakeholders, the GUI interfaces which prompt the stakeholder with acceptable choices 

become preferable. The resource definitions file is only used to provide suggestions to the 

policy creation GUIs. It includes the names of the CAs, and their publishing directories, 

attribute names and values, the principals that are acceptable for issuing specific attribute 

values, and a list of actions that are relevant to the resource realm. In summary the two 

methods of getting started are: 

•  Create an XML version of a root policy certificate, following one of the templates 
provided by the Akenti distribution, and use a command line program to sign it with 
the stakeholder’s private key contained in a pkcs12 format file, and store it in the 
resource tree. 

 



•  Create a resource definition file, start the resource definition server, and then use the 
GUI program  to create, sign and store a policy certificate. 

 
The stakeholder must now create at least one use-condition certificate for the 

resource. Anyone can create a use-condition certificate, but it will only be used during 

authorization if it is issued and signed by one of the stakeholders currently listed in the 

resource’s policy certificate.  

Use-condition and attribute certificates can also be created by a command line 

interface or the GUI certificate generator. In creating a use-condition certificate the 

stakeholder will be presented with a menu of possible stakeholders for the resource (of 

which he must be one), previously defined attribute/value pairs and their allowed 

attribute authorities and the defined actions for the resource. The stakeholder is also 

asked about such details as the length of time for which this certificate should be valid; 

the scope of the use-condition (does it just apply to the one resource or to a hierarchy of 

resources); and whether it is a critical use-condition (it must be satisfied or the user gets 

no access to the resource even if she satisfies other use-conditions). The use-condition 

certificates must be stored in a directory that is specified in the policy certificate. 

When creating an attribute certificate the stakeholder will be presented with a list of 

defined attributes and values for the resource realm. 

Once a set of policy, use-condition and attribute certificates has been stored, the 

stakeholder can use a Web-based interface to see what access is allowed to the resource.  

 

2.5 Checking access 

The Akenti authorization service can be called in several ways: It can be invoked as a 

function call by the PEP and thus run as part of the gatekeeper. It can be contacted as a 

server through TCP or TLS and it will return a signed capability certificate. If an insecure 

protocol is used, the gatekeeper must have a copy of the Akenti server’s public key and 

verify the certificate, before it can trust the information. The Akenti server always returns 

a signed capability certificate that may include both conditional and unconditional rights. 

Conditional rights are rights that may have some conditions attached that only the PEP 

can evaluate, such as current machine load, disk availability or the state of some related 

system variable. We provide an API wrapper that will extract the unconditional actions 

and return them as strings, and will parse and evaluate the runtime conditions calling an 

evaluator function provided by the PEP.  

As has been mentioned previously, the Akenti policy engine finds all the use-

conditions by searching in the URLs specified in the policy certificates and verifying the 



issuer and signature on each certificate. If a use-condition certificate cannot be found for 

each stakeholder group, access to the resource is denied. Attribute certificates are 

searched by following URLs in either the policy certificates and/or use-conditions. 

Again, the issuer and signature of each certificate is verified. This signature verification 

requires that the Akenti policy engine be able to find the X.509 certificates for each 

issuer. If the CAs who issue certificates publish them in an LDAP server, Akenti will 

look there. Otherwise, there must be some setup actions taken to put all the expected 

certificate issuers’ X.509 certificates in a file system or at a location specified by a URL. 

Akenti caches all the certificates that it finds in order to reduce subsequent search time. It 

also caches the authorization decision as a capability certificate that contains the access 

rights of a user for a resource, so that subsequent requests for the same resource by the 

same user require no repeated decisions. The lifetime of the cached certificates is set in 

the policy certificate for the resource. 

 

3. MOD_AKENTI MODULE FOR APACHE WEB SERVER 

Web-controlled sets of documents and services have rapidly grown from collections 

of read-only documents that are centrally administered to a vast array of remotely 

managed documents and services. In the scientific community such Web-based systems 

are increasingly used to provide a common interface to static documents, to allow shared 

authoring of documents, to allow access to legacy data bases, to allow execution of codes 

on shared server machines, and practically anything else an inventive scientist can think 

of. Authentication to perform such access is usually implemented by the http Basic 

Authentication mechanisms, (e.g. user/password or domain based) or by ad-hoc scripts 

based on the username. In the standard HTTP protocol these passwords are passed across 

the internet in clear text and are thus deemed insecure. 

In order to make Akenti authorization available for the widest range of distributed 

resources, we wanted to make it available to Web-accessed resources. There were several 

ways to accomplish this: referencing resources through CGI scripts that called Akenti, 

referencing resources through Java servlets or JSPs that called Akenti, or building Akenti 

authorization into a Web server. The first two methods involve an indirection between the 

request and response which is both less efficient and requires more complicated URLs to 

refer to documents. Since the Apache Web server makes it straightforward to include new 

functionality, we decided to build an Akenti module for Apache.  

The Apache [APACHE 2002a] Web server is a widely used, high-performance 

freeware server which is built around an API [Thau 2002] which allows third-party 



programmers to add new server functionality. Indeed, most of the server’s visible features 

(logging, authentication, access control, CGI, and so forth) are implemented as modules, 

using the same extension API available to third parties. The modules can be statically or 

dynamically linked to the server [Wainwright 2001]. 

 

3.1 How apache modules work 

Apache divides the handling of requests into different phases: 

•  URI to file name translation        
•  Authentication and access checking         
•  Determining the MIME type of the requested entity         
•  Returning data to the client         
•  Logging the request  
 

Each module can contribute to any of these phases. For each phase, a module can 

completely replace an existing module or can be added to a list of existing modules. The 

list of modules acts as a queue in which control is passed from one module to another. 

Each module can return one of three values: OK, DECLINE and FORBID. If a module 

returns OK, then the server passes the request on to other modules in the queue. A 

module returns DECLINE when it wishes to ignore a specific request. A FORBID return 

overrides other module’s replies and causes the server to forbid access to the resource 

requested. Each module can declare a set of handlers to handle specific types of URI 

requests. The interface between the server core and the extension modules is through a 

module structure that consists of a vector of callback routines. A module provides a 

callback for each phase that it wishes to handle and NULL for the rest. The module 

structure for Apache 1.3.x allows a module to define a number of different callback 

routines. Mod_Akenti defines only three of the possible procedures: two to handle 

reading directives from the configuration file and one to check access. 

Apache allows each module to read directives from the configuration file by 

specifying a command table structure. The entries in the command table include the name 

of the command, a pointer to the command handler, an argument which is passed to the 

command handler.  

 

3.2 How mod_akenti works 

Mod_akenti is an Apache module that provides Akenti authorization capabilities for the 

Apache Web server. Mod_akenti is implemented as a Dynamic Shared Object module 

which can be loaded into the server at start-up or restart time. It currently works in 



Apache 1.3.x. Mod_akenti does not define any handlers as it serves as an access control 

mechanism for all requests to the Web server unless otherwise specified.  

Mod_akenti defines two global directives inside the server configuration, and defines 

a check access callback. Thus, its interface consists of a call for per-directory 

configuration, a command table, and a callback for the check access routine.  

The two Akenti directives are: AkentiConf, which supplies the name of the 

configuration file used to configure the Akenti policy engine; and AkentiResources, 

which is used to specify what part of the document tree should be controlled by Akenti. 

The second directive is of interest as it allows other authorization mechanisms to coexist 

with that of mod_akenti. It accepts a set of resource names to be controlled, or ‘ALL’ to 

control the whole hierarchy or an empty argument to control none of the resources. The 

Akenti module requires a secure Apache Web server (Apache + mod_ssl) with client-side 

certificates required. Thus, the Web server authenticates the client’s X. 509 certificate 

before mod_akenti is called. The mod_akenti distribution package [Mudumbai 2002] 

provides detailed information about how to build and configure the Akenti module.  

 

3.3 Web authentication and authorization methods  

Standard Web authentication and access control is based either on the domain in which 

the request originated, or something called Basic Authentication [Franks, et al. 1999] 

where the user provides a user name and password which the Web browser matches 

against user information stored on the server machine. There are many authentication 

modules for Apache based on this mechanism [APACHE 2002b]. Mod_auth is the basic 

module that matches a user and password with an entry in Web specific password and 

group files. Modules such as mod_auth_dbm and mod_auth_db provide greater 

scalability by looking up users in a database. There are also modules available for 

authenticating users in ldap directories, Oracle, and mysql databases and Kerberos users. 

In all of these schemes the user name and password is passed over the network in plain 

text. There is one other form of user authentication, called Digest Authentication, which 

is implemented by mod_auth_digest. This protocol has the server send a nonce to the 

browser who then returns an MD5 hash of the nonce, the user name, password, http 

request and the URI. Thus, the password is not sent in the clear. Unfortunately this 

method is not supported by many browsers and so is not in common use. 

When mod_ssl [MODSSL 2002] is added to the Apache Web server, the 

communication between the client and server becomes HTTP over SSL. In the typical 

commercial use of SSL only the server is required to have an identity certificate and 



<Directory /foo>  

 SSLRequireSSL  

 SSLRequire %{SSL_CLIENT_S_DN_O} eq   

    “LBNL” and   

                 %{SSL_CLIENT_S_DN_OU}  

    in {“DSD”, “ICSD”,

“NERSC”}  

</Directory> 

private key that is used to establish the encrypted communication channel. However, SSL 

can run in a mode that requires the client to present a certificate and demonstrate its 

possession of the private key. When this mode is used mod_ssl can provide access 

control based on the client certificate.  

Mod_ssl can implement a FakeBasicAuth option where it uses the subject of the 

client’s X.509 certificate as a user name, but no password needs to be obtained from the 

user since the SSL handshake has verified the client certificate. It also provides a 

directive called SSLRequire (see Figure 3.) that specifies constraints that need to be 

fulfilled in order to allow access. The requirement specification is an arbitrarily complex 

Boolean expression containing any number of access checks. The variables used in the 

expression include all the standard CGI/1.0 and Apache variables, plus a large number of 

variables defined by mod_ssl that refer to parts of both the server and client certificates: 

e.g. client subject’s DN, the client issuer’s DN and most components of the client’s 

certificate. The syntax also allows an expression to be used from an arbitrary file. This 

method is used to match portions of distinguished name compared to the FakeBasicAuth 

where the whole DN is used. 

While the SSLRequire directive is very powerful and can express many of the same 

constraints that Akenti does, it is limited by the fact that constraints are specified as part 

of the server’s configuration file. If many resources need to be controlled, the server 

configuration file will expand to the point where it becomes difficult to manage. In 

distributed environments where policies for resource access are managed by multiple 

owners, a centralized access control list does not scale well.  

 

 

Figure 3 Example of SSLRequire Directive 



For example, WebDAV [Goland, et al. 1999] has been implemented as Apache 

module, mod_dav, which allows extensions to the HTTP protocol in order to provide a 

shared file system. If several projects need to be managed by one server, there should be 

a way to limit the writing of access policy for a set of resources to the project manager. 

But since all the policy is in one file, this is not possible.  

Mod_akenti, on the other hand, stores all of its policy information outside of the 

Web server configuration file in the normal Akenti certificate set. The only information 

in the Apache configuration file is the name of the resources which mod_akenti wishes to 

control and a pointer to Akenti’s own configuration file. Thus, the same access policy 

certificates can be used for resources referenced via the Web or by another remote 

method. Certificate caching is especially important for Web accessed resources which 

tend to be accessed in clusters. 

 

4. PERFORMANCE MEASUREMENTS 

The performance of Akenti authorization is typically dominated by the time it takes to 

find and retrieve the policy certificates. Nevertheless, it is valuable to measure the system 

performance in order to characterize and to optimize it.  

Two sets of measurements are of interest to potential users of Akenti. The first is the 

time required to make an authorization decision. As mentioned above, this time is 

strongly dependent on the number of credentials that are required and where they are 

stored. The second metric of interest is to compare the time to access a file via a secure 

server, such as SSL-Apache/Akenti, versus the access time using an unsecure server such 

as plain Apache. In the later case, additional variability arises from the network 

transmission time between the client and server including time associated with 

establishing an SSL connection and encrypting the data transfer.  

 The measurements in this paper are for file fetches between a simple command-line 

client and an Akenti/Apache Web server. The client, server and all the certificate servers 

are on a 100 Mb/s LAN. The document sizes varied between 1KB and 1MB in order to 

evaluate the overhead of the SSL encryption. The Akenti code was run on both a dual 

processor 450Mhz RedHat Linux box and a 450Mhz Sun Ultra 60 running Solaris 5.7. 

The numbers in Table 1 are for the Linux system. The Sun times were about 10% higher. 

We measured the access times for two different access policies. The first was a 

minimum policy consisting of one policy certificate, one use condition certificate, one 

attribute certificate, and two identity certificates. This represents the case of one 

stakeholder for a resource who limits access to the resource to members of a group. The 



stakeholder is also the issuer of the group attribute certificates. The second policy that we 

measured represents a more typical policy where there are two stakeholders, and a 

separate attribute authorizer. This requires: one policy certificate, two use-conditions, two 

attribute conditions and four X.509 certificates. We also took measurements with and 

without Akenti server certificate caching enabled.  

On the server side, Akenti does extensive logging of each logical step in the policy 

engine. This measurement excludes the server side time spent in the Apache server and 

SSL encryption. The times in Table 1 are the times in the Akenti policy engine (Akenti), 

the total socket read time the client saw (Total) and the difference between the two which 

can mostly be accounted for by SSL overhead (SSL/network). 

The test program fetched the same file 5 times and then calculated the mean fetch 

time. The standard deviation of the measurements is shown in parentheses. The data from 

the client program was combined with the matching server log entries to determine the 

values in Table 1. 

 

 No caching Caching 

File 
(bytes) 

Akenti 
(seconds) 

SSL/network 
(seconds) 

Total 
(seconds) 

Akenti 
(seconds) 

SSL/network 
(seconds) 

Total 
(seconds) 

Minimum Policy 

1Kbyte 0.142 
(0.0033) 0.481 0.623 

(0.007) 
0.00630 

(0.000145) 0.458 0.464 
(0.0101) 

1Mbyte 0.142 
(0.001) 1.221 1.363 

(0.0047) 
0.00588  

(0.000044) 1.193 1.199 
(0.0125) 

Typical Policy 

1Kbyte 0.233 
(0.014) 0.486 0.720 

(0.019) 
0.00587 

(0.000026) 0.455 0.461 
(0.015 

1Mbyte 0.228 
(0.004) 1.220 1.448 

(0.007) 
0.00613 

(0.000032) 1.202 1.208 
(0.016) 

Table 1: Average times to fetch a document from a secure Akenti server 

 

Several observations can be made from this data. As the files get bigger, the SSL 

encryption times tend to dominate. However, SSL can be configured to do only 

authentication and message integrity checking if encryption is not needed, which would 

reduce this time. As more certificates are required to grant access, the times in the Akenti 



policy engine increase. We can see from the Akenti log files that the major categories of 

time in the policy engine are fetching certificates and verifying signatures. In the 

minimum certificate case 89.2 milliseconds or about 62% of the total time was spent 

fetching certificates. In the more typical case, 156 milliseconds or about 67% of the time 

was in fetching certificates. In each case about 18 milliseconds was spent in certificate 

verification. The rest of the time was spent parsing the use-conditions, signing the final 

capability certificate and general program overhead. 

In the case when caching is enabled and a valid capability certificate is found, the 

time in the policy engine is about 6 milliseconds. The caching lifetimes of cached use-

condition and identity certificates is generally longer than that for capabilities, so there is 

an intermediate case that we did not measure where cached versions of those certificates 

are used to reestablish the capability.  

For a Web server that is mainly fetching documents, caching by the Akenti policy 

engine provides a big performance benefit, since there are usually several clustered 

accesses to documents in the same general protection domain. If Akenti is being used by 

a server where the pattern of accesses is isolated, the caching may actually be a 

disadvantage, since cache misses and subsequent cache updates are relatively costly 

 

 With Akenti /SSL Without Akenti /SSL 
1Kbyte 0.461 0.00375 (.0003) 
1Mbyte 1.21 0.213 (.0337) 

Table 2 Document fetch with and without Akenti access control 
 

In order to put the Akenti/Apache Web server in context, we measured the fetch 

times in our environment from a standard, non-SSL-enabled Apache server. The 

corresponding fetch times for 1KB and 1MB files using the same client program but a 

standard Apache server with no access control was about 4 milliseconds for the 1KB file 

and about 213 milliseconds for the 1MB file. (See Table 2.) For Web servers, that most 

meaningfully compares to the 0.462 and 1.21 second times for an average set of access 

constraints from a caching Akenti server. Since Akenti is caching, most of this time is 

due to using SSL. Obviously, the target applications for Akenti access control are ones 

where there is something important to protect and the granularity of the access checking 

is fairly large, e.g., a large document to be fetched, or a substantial process is to be started 

on the resource machine.  
Another case where the Akenti overhead is not too severe is accessing a Web 

document that requires the parallel fetching of many secure components. For example, a 

document where all its parts are in the same protected tree. In this case, the browser and 



the server fetch in parallel, and since Akenti has no trouble working in parallel and 

sharing the same cache, the net result of such a clustered fetch is not too much worse than 

the secure fetching of one document. 

 

5. RELATED WORK 

5.1 Existing Systems 

KeyNote [Blaze, et al. 1999] is a trust management system, which provides a simple 

language for describing and implementing security policies, trust relationships, and 

credentials. Like Akenti, it provides a practical tool for authorization in a distributed 

environment. It differs from Akenti by using authorization delegation instead of resource 

access policy. KeyNote defines a principal as any convenient string which may include a 

cryptographic public key. Authorization policy is contained in assertions which consist of 

a sequence of fields. Each field is represented by a keyword and value. A credential 

asserts some attribute about a principal and is signed by a trusted authority. Both 

assertions and credentials are represented by the same keyword policy language. Akenti 

and KeyNote both provide a function call API for compliance-checking for a resource 

gatekeeper (PEP) to call when making an access decision. Both systems return a list of 

trusted actions. KeyNote is less tied to one form of authentication than Akenti, since a 

KeyNote principal may be represented by a cryptographic key, or it may just be an 

opaque string. They deliberately did not require X.509 certificates in order to separate the 

issues of secure naming and authorization. While this removes the need for maintaining a 

PKI, it means that the principals named in the authorization policy may be opaque 

making it harder for a stakeholder to read and evaluate the policy of a resource. 

The mechanisms for creating and storing policy assertions and storing and 

marshaling certificates are left up to the installer of a KeyNote system. In contrast, one of 

the emphases of the Akenti system is to support remote creation and storage of policy 

certificates. Akenti thus provides several tools to help in their creation and signing, while 

the policy engine supports gathering certificates from file systems, LDAP servers or Web 

servers. Other systems rely on the user being able to edit policy files on the resource 

gateway machine which does not meet our goal of accommodating distributed 

stakeholders. 

In our original implementation of Akenti, we chose a simple keyword language for 

our certificates similar to that used by KeyNote. Eventually, expressing the constraints 

and trust relationships for all the attributes became increasingly awkward, with too much 

information being implicit in the ordering of fields or in relationships between fields. For 



our second implementation we switched to XML for greater flexibility and more precise 

definition of the semantics. We were also encouraged by the availability of XML parsing 

tools in a variety of languages and have made use of the Xerces parsers from the Apache 

XML Project [APACHE 2002c].  

Akenti is the only system of those surveyed that uses a pure pull model. The main 

motivation for this decision was to require no changes to the existing client server 

interfaces. Most other distributed authorization models require the requestor to present 

some credentials, in some cases to simplify the implementation of the PDP, but in other 

cases to give the user more control. The most serious feature lacking in Akenti, is the 

ability of a user to limit his access during a specific session. This lack is most noticeable 

in role based access control systems where the user would like to specify the role to use 

when making an access.   

Several recent authorization services implement a hybrid model of authorization. In 

this model, the requestor contacts an authorization server before accessing the resource to 

get a proxy credential. The proxy credential may be handed back to a trusted 

authorization server or may contain the authorization assertions.  InterNet2’s Shibboleth, 

Microsoft’s Passport and Liberty Alliance’s open standards for federated network identity 

are examples of the first style; the Globus Project’s Community Authorization Service 

(CAS)  and the European Data Grid’s VOMS  server are examples of the second. 

Shibboleth [Erdos and Cantor 2002] is a cross-institutional authentication and 

authorization service for access control to Web-accessed resources. It is being specified 

by the Internet2 middleware architecture committee. It has many of the standard goals of 

distributed authorization with one additional twist. It wants to be able to grant access to a 

user who can still maintain anonymity at the resource site. The major motivation for this 

goal is access to library materials by academics. Shibboleth’s authorization model entails 

a user making a request to a Web server and providing an identity handle back to his 

home institution. The Web server then asks that institution for attributes about the user. It 

then checks those attributes against its local policy to allow or deny access. The user need 

only authenticate to his host site and may use whatever type of credentials that site 

recognizes. One difference between this trust model and that used by Akenti, is that in 

Akenti, the resource provider can separately specify authentication authorities and 

attribute authorities. In Shibboleth, the subject’s home institution must provide both the 

authentication information about a user and all his attributes.  

Microsoft’s Passport and Liberty Alliance’s federated identity servers [Hodges, 

Wayson 2003] use a similar model. A user authenticates once with an identity server, and 



then relying sites contact that server to get authentication or attribute information about 

the user. 

The Community Authorization Service (CAS) [Perlman, et al. 2002] is a new 

authorization service being developed by the Globus Project [Foster and Kesselman 

1999] for Grid environments. Their authorization model allows a resource site to grant a 

community access to resources and the authorization server for that community to grant 

access to the community members. This is implemented by having the user contact the 

CAS server to get a delegated proxy certificate [S. Tuecke, et al. 2002], which includes a 

rights restriction extension that limits what resources can be accessed. The resource 

gatekeeper must interpret the restricted rights extension and verify that the community 

has such rights to the resource. Since the delegated proxy is a short-lived X.509 

certificate it can be passed between the user and the resource gateway as part of the 

GSI/SSL connection. There is no additional information that needs to be conveyed, as is 

the case when a user needs to pass attribute certificates to the gatekeeper. CAS differs 

from Akenti in that the examination of policy and granting of rights is done before the 

gatekeeper is contacted. This means the user must ask for all the rights she will need in 

advance of referencing the resource. In Akenti, all the gathering and checking of policy is 

done after the call to the gatekeeper to perform a certain action. Akenti does cache the 

rights that the user was granted, to deal with the common case of several calls in rapid 

succession for resources in the same realm.  

Policy about resources is stored and managed by the CAS servers and so far mainly 

consists of lists of objects and allowed rights. This information is included in the rights 

restriction extension of the delegated proxy. The intent of the CAS project is to extend 

the policy language as the need arises. The CAS administrator is responsible for adding 

each community member to the appropriate groups. The CAS administrator may also 

delegate administration of subsets of the objects to additional people. In contrast, in 

Akenti, a new user would need to contact the stakeholder for the resource to be added to 

the policy files.  

VOMS is another ad hoc solution to authentication in a GSI-enabled Grid. [Alfieri, et 

al. 2003] It is similar to the CAS model, but the VOMS server is run by a virtual 

organization and supplies authorization information about its own members. This service 

is implanted and used within the European Data Grid. 

 

 

 



5.2 Proposed Standards 

While there has been a great deal of work in formulating standards for authorization 

protocols or data structures, no single standard has emerged. There is an IETF proposed 

Attribute Certificate profile [Farrell and Housley 2001] to associate attributes with an 

X.509 identity. While the contents and purpose of this certificate are basically the same 

as an Akenti attribute certificate, we chose not to use it in our implementation because it 

is difficult for users and applications to deal with ASN.1 structures. A major goal of 

Akenti was to make the policy as easy to understand as possible, so using a consistent 

ASCII format to represent all our policy certificates was preferable to using a proposed 

ASN.1 standard for attribute certificates in addition to our own XML format for policy 

and use-condition certificates.  

A recent XML standard specification for security assertions named Security 

Assertion Markup Language (SAML) [Hallam-Baker and Maler 2002] has been 

published by the OASIS consortium [OASIS 2002]. This standard defines both protocols 

and assertion structures in XML. Assertions come in three types: Authentication: the 

specified subject was authenticated by a particular means at a particular time; Attribute: 

the specified subject is associated with the supplied attributes; Authorization Decision: a 

request to allow the specified subject to access the specified resource has been granted or 

denied. The SAML authorization request message provides the authentication assertion 

for the subject along with additional evidence that can include other assertions about the 

subject. This request is more general than Akenti in two respects: it handles multiple 

authentication methods and it allows the requestor to push attributes to the PEP. 

The attribute assertion/certificate has the same purpose as the PKIX Attribute 

Certificate and the Akenti attribute certificate: namely, a subject name, an associated 

attribute-value pair and the authority that attests to this and could be used in place of an 

Akenti Attribute certificate. 

The capability certificate returned by the Akenti server differs from the 

Authorization Decision assertion in that it does not contain the reasons (evidence) of why 

it made the decision. Both may contain unresolved conditions on the actions, so that the 

PEP can do further checks. The SAML assertion schema specifies a few conditions such 

as audience restriction, but the conditions element can be extended which might enable it 

to cover the types of runtime conditions that Akenti capability certificates include.  

  The SAML standards are focused on letting various peers report security decisions. 

The SAML authorization assertion could probably replace the Akenti capability 

certificate and adapting the SAML authorization request message would considerably 



generalize the Akenti authorization model. However, the focus of Akenti is on defining, 

gathering and interpreting policy (use-condition) statements about the resource. SAML 

does not address the expression of access policy. 

 EXtensible Access Control Markup Language (XACML) is another recently 

proposed XML language for an extensible access control policy [Godik, Moses 2003]. It 

is complementary to SAML as it focuses more on expressing the resource-centered 

access policy than on user credentials or authorization assertions. It does overlap SAML a 

bit, in its specification of authorization requests and responses. XACML has a rich policy 

information model consisting of targets (subject, resource, action), which are used in 

rules (target, conditions, (allow/deny)) which in turn are combined into policies that 

include user obligations to be enacted when accessing the resource. The XACML policy 

language is more complex than the Akenti certificate schema and could be used to 

express Akenti-style access constraints. However, there is an underlying assumption that 

all policy about a resource domain is managed by a trusted Policy Authority Point and 

can be accessed securely by the PDP. Subject attributes are provided by a trusted Policy 

Information Point. Thus, the XACML policy does not contain any explicit trust 

relationships. In contrast, Akenti assumes no trusted servers, other than Akenti itself, and 

puts all the trust relationships explicitly into the policy statements. 

Like the SAML request, the XACML authorization request includes context about 

the subject that can be used to pass attribute, role or authentication information. The 

authorization responses return a value of permit, deny or indeterminate if it needs to 

know more about the subject to make a decision. The response may also contain 

obligations, actions that the PEP must perform when the access is granted to the subject. 

XACML does not explicitly include the signing of any of its messages or policy files, but 

remarks that the XML digital signatures may be used.  

Both of these XML languages have recently appeared in the OASIS standards body. 

SAML was accepted as an OASIS standard in Nov. 2002, and XACML was accepted as 

a standard in Feb. 2003. Whether the next version of Akenti should try to adopt the 

SAML authorization request and assertion and the XACML policy language will depend 

on how widely these standards are used. In the case of XACML policy, it will depend ifib 

whether rules and conditions can be extended to include trust information.  

 

6. CONCLUSIONS 

Akenti is an authorization service (PDP) that uses authenticated X.509 certificates to 

establish identity and distributed digitally signed authorization policy certificates to make 



access decisions about distributed resources. It supports authorization decisions based on 

policy that it gathers from many sites. It returns authorization decisions as a signed 

capability certificate which can be used directly by a PEP to grant access or could be used 

by the subject of the certificate as a rights-granting authorization assertion. It supports 

Globus proxy identity certificates, and could easily be extended to handle restricted 

delegation credentials. We have implemented an Apache Web server module which 

allows the same authorization policy to be used to control access to Web accessed 

resources as well as resources accessed by other remote methods. 

Akenti differs from most of the other authorization services that we have surveyed in 

its emphasis on using easily read policy statements that are independently created and 

signed by multiple stakeholders. This policy can be stored on the resource host or local to 

the stakeholder and is gathered and evaluated by the trusted authorization server (PDP) at 

the time of resource access. The Akenti distribution also includes several tools for 

displaying the combined authorization policy for a given resource and for tracking the 

steps in a user’s authorization or rejection. 

Akenti was developed for use in distributed environments that rely on X.509 

certificates and TLS to establish authenticated secure connections between the users and 

the resources. Hence, it was natural to rely on X.509 certificates for identity and to 

implement a pull authorization model. With the advent of the Web services model for 

distributed computing environments, the underlying security mechanisms are changing. 

TLS will be replaced with secure connections being made at the SOAP message level. 

The suggested protocols for secure connections support a number of different 

authentication methods. With the communication protocol consisting of XML messages, 

it is much easier to extend the security protocols to push attribute or authorization 

information to a PEP. It is anticipated that there will be a standard interface for a Grid 

authorization service that will standardize the authorization request and response 

messages. The request message will contain additional assertions which can include roles 

as well as a generalized authentication token. As Akenti evolves to fit into the Grid 

Services environment, it will need to address the issue of multiple authentication tokens 

and additional attribute assertions. Akenti should be able to conform to new authorization 

interfaces while keeping intact its fundamental goal of accommodating access policy 

statements that are independently created by stakeholders from unrelated domains. 

The Akenti authorization has been used as part of the Diesel Combustion 

Collaboratory [Pancerella, 1999] to control access to Web-based documents and remote 



execution and is now being integrated with the Globus job manager to control access to 

legacy applications in the National Fusion Grid [Keahey, et al. 2001].  

The code is freely available as C++ source code, or Linux and Solaris executables. 

(http://www-itg.lbl.gov/Akenti)  

 

ACKNOWLEDGMENTS 

The original idea for Akenti came from William Johnston. Case Larsen did a large part of 

the original implementation. Wille Chin, Maria Kulick, Guillaume Farret and Xiang Sun 

have also contributed to the current implementation. 

 
REFERENCES  
D. A. AGARWAL, S. R. SACHS, W.E.JOHNSTON 1998 The Reality of Collaboratories Computer Physics 
Communications, 110, 134-141 
AKENTI.XSD 2003 Akenti Certificate schema http://www-itg.lbl.gov/Akenti/docs/AkentiCertificate.xsd. 
R. ALFIERI, R. CECCHINI, V. CIASCHINI, L. DELL’AGNELLO, A. FROHNER, A. GIANOLI, 
K.LORENTEY AND F. SPATARO 2003, VOMS, An Authorization System for Virtual Organizations 
presented at the 1st European Across Grids Conference, Santiago de Compostela, February 13-14, 2003  
_ 
APACHE 2002a Apache Software Foundation http://www.apache.org 
APACHE 2002b Apache Module Registry, http://modules.apache.org/ 
APACHE 2002c Apache XML Project; http://xml.apache.org/ 
A. ARSENAULT, S. TURNER 2002 Internet X.509 Public Key Infrastructure: Roadmap Internet Draft draft-
ietf-pkix-roadmap-09.txt July 2002 http://www.ietf.org/internet-drafts/draft-ietf-pkix-roadmap-09.txt 
E. BELANI, A. VAHDAT, T. ANDERSON, M. DAHLIN 1998 The CRISIS Wide Area Security Architecture, 
Proceedings of the USENIX Security Symposium, San Antonio, Texas, January 1998 
M. BLAZE, J. FEIGENBAUM, J. IOANNIDIS, A. KEROMYTIS 1999 The KeyNote Trust Management 
System, Version 2. IETF RFC-2704 http://www.crypto.com/papers/rfc2704.txt  
T. DIERKS, C. ALLEN 1999 The TLS Protocol, Version 1 IETF RFC 2246; http://www.ietf.org/rfc/rfc2246.txt  
DISCOM2, ASCI DisCom2 http://www.llnl.gov/asci/discom/  
C. ELLISON 1999 SPKI Requirements, IETF RFC 2692, http:// www.ietf.org/rfc/rfc2692.txt 
M. ERDOS, S. CANTOR 2002 Shibboleth-Architecture draft v05, 
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-shibboleth-arch-05.pdf 
S. FARRELL, R. HOUSLEY 2001, An Internet Attribute Certificate Profile for Authorization, draft-ietf-pkix-
ac509prof-09.txt June 2001 http://www.ietf.org/internet-drafts/draft-ietf-pkix-ac509prof-09.txt 
I. FOSTER, C. KESSELMAN, eds. 1999 The Grid: Blueprint for a New Computing Infrastructure, 1999, 
Morgan Kaufmann 
I. FOSTER, C. KESSELMAN, S. TUECKE 2001 The Anatomy of the Grid: Enabling Scalable Virtual 
Organizations. International J. Supercomputer Applications, 15(3), 2001. http://www.globus.org/ 
J. FRANKS, P. HALLAM-BAKER, J. HOSTETLER, S. LAWRENCE, P. LEACH, A. LUOTONEN, L. 
STEWART 1999 HTTP Authentication: Basic and Digest Access Authentication, IETF RFC2617, 
http://www.ietf.org/rfc/rfc2617.txt 
S. GODIK, T. MOSES 2003 eXtensible Access Control Markup Language (XACML) Version 1.0 oasis-xamcl-
1.0.pdf   http://www.oasis-open.org/committees/xacml/repository/oasis-xamcl-1.0.pdf 
Y. GOLAND, E. WHITEHEAD,  A. FAIZI,  S. CARTER, D. JENSEN 1999 HTTP Extensions for 
Distributed Authoring -- WEBDAV, IETF RFC2518 http://www.ietf.org/rfc/rfc2518.txt
P. HALLAM-BAKER, E. MALER, eds. 2002 Assertions and Protocol for the OASIS Security Assertion 
Markup Language (SAML), draft-ssct-core-31, http://www.oasis-open.org/committees/security/docs/ draft-ssct-
core-31.pdf 
J. HODGES, T. WAYSON 2003 Liberty Architecture Overview http://www.projectliberty.org 
R. HOUSLEY, W. POLK, W. FORD, D. SOLO 2001 Internet X.509 Public Key Infrastructure Certificate and 
CRL Profile draft-ietf-pkix-new-part1-12.txt, http://www.ietf.org/internet-drafts/draft-ietf-pkix-new-part1-12.txt 
K. KEAHEY, T. FREDIAN, Q. PENG, D.P. SCHISSEL, M. THOMPSON, I. FOSTER, M. GREENWALD, D. 
MCCUNE 2001 Computational Grids in Action: The National Fusion Collaboratory, Future Generation 
Computer System, 2001., http://www.fusiongrid.org 
J. KOHL, B. C. NEUMAN 1993 The Kerberos Network Authentication Service (Version 5). Internet Request 
for Comments RFC-1510.  
LAUNCH PAD 2002 Portal to the IPG, http://www.ipg.nasa.gov/launchpad/servlet/launchpad 



B. LAMPSON, M. ABADI, M. BURROWS, E.WOBBER 1992 Authentication in Distributed Systems: Theory 
and Practice, ACM Trans. Computer Systems 10,4 (Nov.1992) pp 265-310 
H. M. LEVY 1984 Capability-Based Computer Systems Digital Press, 1984 available on-line at 
http://www.cs.washington.edu/homes/levy/capabook/ 
MODSSL 2002 http://www.modssl.org/ 
S. MUDUMBAI, 2002 mod_akenti: Akenti Access Control module for Apache http://www-
itg.lbl.gov/Akenti/docs/ mod_akenti.html 
IPG, 2002 NASA’s Information Power Grid, http://www.ipg.nasa.gov/ 
NFC 2002 National Fusion Grid, http://www.fusiongrid.org/ 
B. C. NEUMAN, T. TS’O, 1994 Kerberos: An Authentication Service for Computer Networks, IEEE 
Communications, 32(9):33-38.  
B. C. NEUMAN 1993 Proxy-Based Authorization and Accounting for Distributed Systems Proceedings of 
13th International Conference on Distributed Computing Systems 1993, pp 283-291 
C. PANCERELLA, L. RAHN, C. YANG 1999 The Diesel Combustion Collaboratory: Combustion Researchers 
Collaborating over the Internet, Proceedings of ACM/IEEE SC99 Conference, November 13-19, 1999. Portland, 
Oregon, USA, http://www-collab.ca.sandia.gov/dcc/ 
PPDG 2002 Particle Physics Data Grid , http://www.ppdg.net/ 
L PEARLMAN, V. WELCH, I. FOSTER, C. KESSELMAN, S. TUECKE 2002 A Community Authorization 
Service for Group Collaboration. Proceedings of the IEEE 3rd International Workshop on Policies for 
Distributed Systems and Networks, 2002 http://www.globus.org/research/papers.html#CAS-2002. 
OASIS, 2002 www.oasis-open.org 
T. RYUTOV, G. GHEORGHUI, B.C. NEUMAN 1999 An Authorization Framework for Metacomputing 
Applications, Cluster Computing vol. 2 num. 2, 1999 pp. 165-175 
T. RYUTOV, B.C. NEUMAN 2000, Access Control Framework for Distributed Applications, IETF draft 
work-in-progress draft-ietf-cat-acc-cntrl-frmw-05.txt, Nov 2000 
R. THAU 2002 Apache API notes, http://modules.apache.org/doc/API.html 
S. TUECKE, D. ENGERT, I. FOSTER, V. WELCH, M. THOMPSON, L. PEARLMAN, C. KESSELMAN 
2002 Internet X.509 Public Key Infrastructure Proxy Certificate Profile, IETF draft, http://ww.ietf.org/internet-
drafts/draft-ietf-pkix-proxy-03.txt 
M. THOMPSON, W. JOHNSTON, S. MUDUMBAI, G. HOO, K. JACKSON, A. ESSIARI 1999 Certificate-
based Access Control for Widely Distributed Resources, Proceedings of the Eighth Usenix Security 
Symposium, Aug. 1999  
WAINWRIGHT P. 2001 Professional Apache, Wrox 2001, http://www.apache.org/ 
T. Y.C. WOO S.S LAM 1993 A Framework for Distributed Authorization Proceedings of the ACM conference 
on Computer and Communications Security, Fairfax, Virginia 1993 
 


